Models for count data with many zeros

نویسندگان

  • Martin Ridout
  • Clarice G.B. Demétrio
چکیده

Poisson regression models provide a standard framework for the analysis of count data. In practice, however, count data are often overdispersed relative to the Poisson distribution. One frequent manifestation of overdispersion is that the incidence of zero counts is greater than expected for the Poisson distribution and this is of interest because zero counts frequently have special status. For example, in counting disease lesions on plants, a plant may have no lesions either because it is resistant to the disease, or simply because no disease spores have landed on it. This is the distinction between structural zeros, which are inevitable, and sampling zeros, which occur by chance. In recent years there has been considerable interest in models for count data that allow for excess zeros, particularly in the econometric literature. These models complement more conventional models for overdispersion that concentrate on modelling the variance-mean relationship correctly. Application areas are diverse and have included manufacturing defects (Lambert, 1992), patent applications (Crepon & Duguet, 1997), road safety (Miaou, 1994), species abundance (Welsh et al., 1996; Faddy, 1998), medical consultations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hurdle, Inflated Poisson and Inflated Negative Binomial Regression Models ‎ for Analysis of Count Data with Extra Zeros

In this paper‎, ‎we ‎propose ‎Hurdle regression models for analysing count responses with extra zeros‎. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset‎. In this example‎, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...

متن کامل

Fitting of Count Time Series Models on the Number of Patients Referred to Addiction Treatment Centers in Semnan County

Abstract. Count data over time are observed in many application areas. Many researchers use time series patterns to analyze this data. In this paper, the poisson count time series linear models and negative binomials on this type of data with the explanatory variables are studied. The Likelihood analysis and the evaluation of count time series model based on generalized linear models are pres...

متن کامل

Zero-Inflated Generalized Poisson Regression Model with an Application to Domestic Violence Data

The generalized Poisson regression model has been used to model dispersed count data. It is a good competitor to the negative binomial regression model when the count data is over-dispersed. Zero-inflated Poisson and zero-inflated negative binomial regression models have been proposed for the situations where the data generating process results into too many zeros. In this paper, we propose a z...

متن کامل

When Two Are Better Than One: Fitting Two-Part Models Using SAS

In many situations, an outcome of interest has a large number of zero outcomes and a group of nonzero outcomes that are discrete or highly skewed. For example, in modeling health care costs, some patients have zero costs, and the distribution of positive costs are often extremely right-skewed. When modeling charitable donations, many potential donors give nothing, and the majority of donations ...

متن کامل

Hidden Markov models for time series of counts with excess zeros

Integer-valued time series are often modeled with Markov models or hidden Markov models (HMM). However, when the series represents count data it is often subject to excess zeros. In this case, usual distributions such as binomial or Poisson are unable to estimate the zero mass correctly. In order to overcome this issue, we introduce zero-inflated distributions in the hidden Markov model. The em...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999